Compute the determinants in Exercises 9–14 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

\begin{vmatrix} 6 & 3 & 2 & 4 & 0 \\ 9 & 0 & -4 & 1 & 0 \\ 8 & -5 & 6 & 7 & 1 \\ 2 & 0 & 0 & 0 & 0 \\ 4 & 2 & 3 & 2 & 0 \\ \end{vmatrix}

Compute the

hansel

Answered by Aaron 2 years ago

**first expand along the fifth column**

$$ (-1)^{3+5}(1) \begin{vmatrix} 6 & 3 & 2 & 4 \\ 9 & 0 & -4 & 1 \\ 2 & 0 & 0 & 0 \\ 4 & 2 & 3 & 2 \end{vmatrix} $$

**then along the third row**

$$ (1)(-1)^{3+1}(3) \begin{vmatrix} 3 & 2 & 4 \\ 0 & -4 & 1 \\ 2 & 3 & 2 \end{vmatrix} $$

**finally along the first column**

$$(3)\bigg((-1)^{1+1}(3) \begin{vmatrix} -4 & 1 \\ 3 & 2 \\ \end{vmatrix} +(-1)^{3+1}(2) \begin{vmatrix} 2 & 4 \\ -4 & 1 \\ \end{vmatrix} \bigg) = (3)(3(-11)+2(18))=9 $$

Surround your text in `*italics*`

or `**bold**`

, to write a math equation use, for example, `$x^2+2x+1=0$`

or `$$\beta^2-1=0$$`

Stats

Views: 82

Asked: 2 years ago