Asked by bhdrkn 4 years ago

A potter's wheel moves from rest to an angular speed of 0.20 rev/s in 30 s. Find its angular acceleration in radians per second per second.

A potter

bhdrkn

Answered by lancer 4 years ago

the angular acceleration is,

$$ \alpha=\frac{\Delta \omega}{\Delta t}=\frac{\frac{0.20 \, rev}{1s} \times \frac{2\pi \, rad}{1 \, rev}}{30 \, s}=0.04 \, rad/s^2 $$

**Excerpt from file: **BSA310,Week3,DQ2 BasedonMohameds(2007)article,identifythreecommonlyusedaccounting packagesusedbysmallandmidsizedbusinesses.Listoneadvantageofeach package. InuitQuickbooks Quickbooksprovidesaccountingneedstosmallbusinesseswithsimpletousesoftware.

**Filename: **
BSA 310 Week 3 DQs.zip

**Filesize: **
< 2 MB

**Downloads: **
2

**Print Length: **
1 Pages/Slides

**Words: **
NA

Surround your text in `*italics*`

or `**bold**`

, to write a math equation use, for example, `$x^2+2x+1=0$`

or `$$\beta^2-1=0$$`

Stats

Views: 19

Asked: 4 years ago