Griffiths 1.12 The height of a certain hill (in feet) is given by

Griffiths 1.12 The height of a certain hill (in feet) is given by


P
Asked by 5 months ago
945 points

The height of a certain hill (in feet) is given by,

$$h(x,y)=10(2xy-3x^2-4y^2-18x+28y+12)$$

where y is the distance (in miles) north, x the distance east of South Hadley.

(a) Where is the top of the hill located?

(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile east of South Hadley? In what direction is the slope steepest, at that point?

Griffiths
gradient

1 Answer

P
Answered by 5 months ago
945 points

The function $ h(x,y) $ looks like

graph of hill griffiths 1.12

part a

The top of the hill is located where the gradient is zero,

$$\nabla h=0$$

$$\rightarrow 10(2y-6x-18) \hat{x}+10(2x-8y+28)\hat{y}=0$$

$$ \left\{ \begin{array}{c} 2y-6x-18=0 \\ 2x-8y+28=0 \\ \end{array} \right. $$

$$\rightarrow x=-2,\,\,y=3$$

and so the top of the hill is 3 miles north and 2 miles west of South Hadley

part b

plug the values from part a into the function to gets its height

$$h(-2,3)=720\text{ feet}$$

part c

Use $x=1, \, y=1$ and the gradient you found in part a

$$\nabla h(1,1) = 10[(2-6-18) \hat{x} + (2-8+28) \hat{y}] = -220 \hat{x} + 220 \hat{y}$$

is the direction and

$$\left\lvert \nabla h \right\rvert = \sqrt{(-220)^2+220^2} = 220\sqrt{2} \approx 311$$

in ft per mile

So the steepness of the slope is 311 ft/mile in the northwest direction

Your Answer

Surround your text in *italics* or **bold**, to write a math equation use, for example, $x^2+2x+1=0$ or $$\beta^2-1=0$$

Use LaTeX to type formulas and markdown to format text. See example.

Sign up or Log in

  • Answer the question above my logging into the following networks
Sign in
Sign in
Sign in

Post as a guest

  • Your email will not be shared or posted anywhere on our site
  •  

Stats
Views: 30
Asked: 5 months ago

Related